Delab Trees

A python library to analyze conversation trees
Julian Dehne

2024-11-18

At a glance

By the end of this tutorial, you will be able to

o Analyze the integrity of the social media conversation
o Use network analysis to extract longer reply path that might represent actual deliberation
o Use network analysis to show which author is the most central in the discussion

Table of Content
Introduction
Set-up

Tool application

Conclusion and recommendations
Introduction

Description

e This notebook introduces the python library delab_ trees and showcases on some examples
how it can be useful in dealing with social media data.

Target Audience

e This library is intended for advanced CSS researchers that have a solid background in
network computing and python

o Motivated intermediate learners may use some of the toolings as a blackbox to arrive at
the conversation pathways later used in their research

Prerequisites

Before you begin, you need to know the following technologies.

e python
e networkX
e pandas

Set-up

e In order to run this tutorial, you need at least Python >= 3.9
e the library will install all its dependencies, just run

pip install delab_trees

Social Science Usecases

This learning resource is useful if you have encountered one of these three use cases:

deleted posts in your social media data

interest in author interactions on social media

huge numbers of conversation trees (scalability)

discussion mining (finding actual argumentation sequences in social media)

Sample Input and Output Data

Example data for Reddit and Twitter are available here https://github.com/juliandehne/delab-
trees/raw/main/delab_ trees/data/dataset_ [reddit|twitter] no_ text.pkl. The data is structure
only. Ids, text, links, or other information that would break confidentiality of the academic access
have been omitted.

The trees are loaded from tables like this:

tree_ id post_id parent_id author_id text created_ at
0 1 1 nan james I am James 2017-01-01 01:00:00
1 1 2 1 mark I am Mark 2017-01-01 02:00:00
2 1 3 2 steven I am Steven 2017-01-01 03:00:00
3 1 4 john I am John 2017-01-01 04:00:00
4 2 1 nan james I am James 2017-01-01 01:00:00
5 2 2 1 mark I am Mark 2017-01-01 02:00:00
6 2 3 2 steven I am Steven 2017-01-01 03:00:00
7 2 4 3 john I am John 2017-01-01 04:00:00

This dataset contains two conversational trees with four posts each.

Currently, you need to import conversational tables as a pandas dataframe like this:

import os

import sys

import warnings

import numpy as np # Example module that might trigger the warning

assert that you have the correct environment
print (f"Active conda environment: {os.getenv('CONDA_DEFAULT_ENV')}")

assert that you have the correct python version (3.9)
print (f"Python version: {sys.versionl}")

Suppress the specific VisibleDeprecationWarning
warnings.filterwarnings("ignore", category=np.VisibleDeprecationWarning)

the interesting code
from delab_trees import TreeManager
import pandas as pd

d = {'tree_id': [1] * 4,
'post_id': [1, 2, 3, 4],
'parent_id': [Nome, 1, 2, 1],
'author_id': ["james", "mark", "steven", "john"],
'text': ["I am James", "I am Mark", " I am Steven", "I am John"],
"created_at": [pd.Timestamp('2017-01-01T01'),
pd.Timestamp('2017-01-01T02"),
pd.Timestamp('2017-01-01T03"),
pd.Timestamp('2017-01-01T04')]1}
df = pd.DataFrame(data=d)
manager = TreeManager (df)
creates one tree
test_tree = manager.random()
test_tree

Active conda environment: notebook
Python version: 3.9.19 | packaged by conda-forge | (main, Mar 20 2024, 12:50:21)
[GCCc 12.3.0]

loading data into manager and converting table into trees...

2024-12-18 09:55:04.857070: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda dr:
2024-12-18 09:55:04.899633: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda dr:
2024-12-18 09:55:04.900762: I tensorflow/core/platform/cpu_feature_guard.cc:182] This Tenso:
critical operationms.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow witl
2024-12-18 09:55:06.978601: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-
TRT Warning: Could not find TensorRT

0% | 0/1 [00:00<7, ?it/s]100% NS 1/1 [00:00<00:00, 142.77it/s]

<delab_trees.delab_tree.DelabTree at 0x7fcd381ee790>

Note that the tree structure is based on the parent_ id matching another rows post_ id.

You can now analyze the reply trees basic metrics:

from delab_trees.test_data_manager import get_test_tree
from delab_trees.delab_tree import DelabTree

import warnings

import numpy as np

Suppress only VisibleDeprecationWarning
warnings.filterwarnings("ignore", category=np.VisibleDeprecationWarning)

test_tree : DelabTree = get_test_tree()
assert test_tree.average_branching factor() > 0

print ("number of posts in the conversation: ", test_tree.total_number_of_posts())

loading data into manager and converting table into trees...
number of posts in the conversation: 4

0% | | 0/1 [00:00<?, 7it/s]1100Y% [N RSN /! [00:00<00:00, 106.93it/s]

Tool application
Use Case 1: Analyze the integrity of the social media conversation
For this we use the provided anonymized sample data (which is real, still):

from delab_trees.test_data_manager import get_test_manager

manager = get_test_manager ()
manager .describe ()

loading data into manager and converting table into trees...
0% | 0/6 [00:00<?, 7it/s]1100% [N | /6 [00:00<00:00, 565.41it/s]
'The dataset contains 6 conversations and 24 posts in total.\nThe average depth of the longe

In order to check if all the conversations are valid trees which in social media data, they often
are not, simply call:

manager.validate(break_on_invalid=False, verbose=False)

0% I | 0/6 [00:00<?, 7it/s] 83% | N | 5/6 [00:00<00:00, 1703.62it/s]

False

Use Case 2: Extract Pathways

o
O

@

o000 O O

@)

As an analogy with offline-conversations, we are interested in longer reply-chains as depicted
in Figure 1. Here, the nodes are the posts, and the edges read from top to bottom as a post

answering another post. The root of the tree is the original post in the online conversation.

Every online forum and social media thread can be modeled this way because every post except
the root post has a parent, which is the mathematical definition of a recursive tree structure.

The marked path is one of many pathways that can be written down like a transcript from a
group discussion. Pathways can be defined as all the paths in a tree that start with the root
and end in a leaf (a node without children). This approach serves the function of filtering linear
reply-chains in social media (see Wang, Joshi, and Cohen (2008); Nishi et al. (2016)), that can
be considered an online equivalent of real-life discussions.

In order to have a larger dataset available we are going to load the provided dataset and run the
flow__computation for each tree.

get the sample trees
from delab_trees.test_data_manager import get_social_media_trees

social_media_tree_manager = get_social _media_trees()

compute the flows

flow_list = [] # initialize an empty list

tree: DelabTree = None

for tree_id, tree in social_media_tree_manager.trees.items():
flows = tree.get_conversation_flows(as_list=True)
flow_list.append (flows)

print(len(flow_list), " were found")

now we are only interested in flows of length 5 or more

Filter to only include lists with length 5 or more
filtered_lists = [1st for 1st in flow_list if len(lst) >= 7]

print(len(filtered_lists), " lists with length > 7 were found")

loading data into manager and converting table into trees...
6235 were found
5218 1lists with length > 7 were found

0% | | 0/7645 [00:00<?, ?7it/s] 1%l | 64/7645 [00:00<00:12, 622.68it/s]
| | 139/7645 [00:00<00:10, 691.56it/s] 3%l | 213/7645 [00:00<00:10, 710.
[| 286/7645 [00:00<00:10, 714.51it/s] 5%l | 358/7645 [00:00<00:10, 707.
| | 429/7645 [00:00<00:10, 677.39it/s] 7%IH | 500/7645 [00:00<00:10, 687.
[| | 569/7645 [00:00<00:10, 680.71it/s] 8%IH | 638/7645 [00:00<00:10, 680.
[| | 708/7645 [00:01<00:10, 685.10it/s] 10%|Il | 780/7645 [00:01<00:09, 693.
[] | 851/7645 [00:01<00:09, 697.09it/s] 12%|IH | 922/7645 [00:01<00:17, 393
[| | 992/7645 [00:01<00:14, 452.20it/s] 14%|IH | 1064/7645 [00:01<00:12, 5
[] | 1128/7645 [00:01<00:12, 533.02it/s] 16%/ Il | 1203/7645 [00:01<00:10, !
[| 1282/7645 [00:02<00:10, 634.24it/s] 18%| N | 1352/7645 [00:02<00:09, ¢
[| | 1423/7645 [00:02<00:09, 661.97it/s] 20%| N | 1496/7645 [00:02<00:09, ¢
[| | 1572/7645 [00:02<00:08, 702.05it/s] 22% N | 1644/7645 [00:02<00:14,

[] | 1719/7645 [00:02<00:12, 480.00it/s] 23% N | 1787/7645 [00:03<00:11,
[| 1871/7645 [00:03<00:09, 596.38it/s] 25% N | 1949/7645 [00:03<00:08,
[| 2028/7645 [00:03<00:08, 677.65it/s] 27%| N | 2102/7645 [00:03<00:08,
[| 2181/7645 [00:03<00:07, 702.80it/s] 29%| G0 | 2255/7645 [00:03<00:07,
[| 2327/7645 [00:03<00:07, 688.01it/s] 31%| NN | 2398/7645 [00:03<00:07
[| 2465/7645 [00:04<00:07, 649.52it/s] 33% NN | 2531/7645 [00:04<00: 1:
I | 2613/7645 [00:04<00:11, 435.13it/s] 35%| NGB | 2694/7645 [00:04<00: 0
[| 2781/7645 [00:04<00:08, 590.65it/s] 37% ! NNG_ | 2863/7645 [00:04<00:0
[] | 2946/7645 [00:04<00:06, 691.04it/s] 40% | NNNEGN | 3024/7645 [00:05<00: 0f
[] | 3099/7645 [00:05<00:06, 699.20it/s] 42% NN | 3178/7645 [00:05<00:(
[] | 3255/7645 [00:05<00:06, 725.08it/s] 44% | NNG_cG | 3337/7645 [00:05<00:
[] | 3414/7645 [00:05<00:05, 719.40it/s] 46Y% | NG | 3491/7645 [00:05<00:
] | 3570/7645 [00:05<00:05, 744.72it/s] 4s% | NG | 3646/7645 [00:05<00:
[| 3720/7645 [00:06<00:10, 368.88it/s] 50Y% | NG | 3799/7645 [00:06<00:
I | 3870/7645 [00:06<00:07, 492.48it/s] 52% NG | 3943/7645 [00:06<00
I | 4017/7645 [00:06<00:06, 590.50it/s] 54% | NG | 4095/7645 [00:06<0
[| 4170/7645 [00:06<00:05, 661.16it/s] 56% N NG | 4243/7645 [00:07<0(
[| 4315/7645 [00:07<00:05, 660.09it/s] 57%| NG | 4385/7645 [00:07<0
[| 4459/7645 [00:07<00:04, 685.07it/s] 59Y% | NG | 4532/7645 [00:07<0
] | 4611/7645 [00:07<00:04, 723.85it/s] 61%| NG | 4685/7645 [00:07<C
[| 4762/7645 [00:07<00:03, 735.51it/s] 63%| NG | 4844/7645 [00:07<
I | 4921/7645 [00:07<00:03, 756.12it/s] 65%| BB | 5006/7645 [00:08<
B | 5085/7645 [00:08<00:07, 350.37it/s] 6%/ | 5162/7645 [00:08<
B | 5227/7645 [00:08<00:05, 459.05it/s] 69% | | 5298/7645 [00:08<
B | 53582/7645 [00:08<00:03, 584.42it/s] 72%| I | 5469/7645 [00:09
EEEEBEEBE] | 5546/7645 [00:09<00:03, 681.27it/s] 74%/H A HHEBHEBE

| 5622/7645 [00:09<00:03, 657.25it/s] 74% | ENKNGTcTczNcNEIH
| 5771/7645 [00:09<00:02, 683.71it/s] 77%/I A H BB
| 5932/7645 [00:09<00:02, 699.

| 5695/7645 [00:09<00:02, 671.

| 6173/7645 [00:10<00:01, 747.

| 6397/7645 [00:10<00:01, 711.

B | 5856/7645 [00:09<00:02, 728.66it/s] 7s% N NN
HEEEEEBEBEE | 5008/7645 [00:09<00:02, 707.69it/s] so% I HEHEHE
B | 6096/7645 [00:09<00:02, 755.50it/s] s1% | NG
HEEEEEEE| | 6249/7645 [00:10<00:01, 731.54it/s] 83% |/ HH B HEBHENE
| | 6323/7645 [00:10<00:01, 701.66it/s] s4% NG
HEEEEEEEEI | 5472/7645 [00:10<00:01, 712.96it/s] s6%| AN EBHREENE
B | 6544/7645 [00:10<00:01, 705.75it/s] s7%| NG

| 6615/7645 [00:10<00:01, 674.

HEEBEEEREEEE | 5697/7645 [00:10<00:01, 715.43it/s] 89% I IIH B HEER

| 6773/7645 [00:10<00:01, 722.46it/s] 90% | KKGGGIINNGINGNG@g | 6546/7645 [00:11<00:02, 300.

HEEEEEEEE | o:8/7645 [00:11<00:02, 360.45it/s] 92% ! IIIINNEREEREE
| 6999/7645 [00:11<00:01, 437.35it/s] 93% | NG | 7079/7645 [00:11<00:01, 507.31

BEEEEEEEE | 7154/7645 [00:11<00:00, 559.98it/s] 95% | IIENIENINEEEE
| 7226/7645 [00:11<00:00, 591.46it/s] 95%| GG | 7207/7645 [00:12<00:00, 577.21

HEEEEEEEEE | 363/7645 [00:12<00:00, 586.20it/s] 97% | IEIIENIGENIEINEEEEE
| 7428/7645 [00:12<00:00, 594.31it/s] 98% | NG | 7495/7645 [00:12<00:00, 610.13

HEEEEEEEEE | 570/7645 [00:12<00:00, 646.41it/s]1100% | IENIENIGEBEINEEEEE

| 7645/7645 [00:12<00:00, 605.44it/s]
0%

| 0/7645 [00:00<7, 7it/s]

1%I

| 77/7645 [00:00<00:10, 742.97it/s]

| | 153/7645 [00:00<00:10, 743.23it/s] 3%l

| | 295/7645 [00:00<00:11, 640.35it/s] 5%l
| | 434/7645 [00:00<00:10, 662.21it/s] 7%
[| | 596/7645 [00:00<00:09, 731.99it/s] 9%
[| | 759/7645 [00:01<00:08, 773.43it/s] 11%|
[| | 907/7645 [00:01<00:10, 665.06it/s] 13%|H

228/7645
367/7645
504/7645
670/7645
837/7645

[00:00<00:11,
[00:00<00:10,
[00:00<00:10,
[00:00<00:09,
[00:01<00:10,

658.
664.
673.
726.
664.

| 976/7645 [00:01<00:10, 63

[| | 1042/7645 [00:01<00:10, 635.24it/s] 14% |l | 1107/7645 [00:01<00:10,
] | 1170/7645 [00:01<00:11, 572.69it/s] 16%|IH | 1247/7645 [00:01<00:10,
[| 1313/7645 [00:01<00:10, 629.19it/s] 18%| I | 1379/7645 [00:02<00:09, ¢
[| 1452/7645 [00:02<00:09, 663.52it/s] 20% Il | 1519/7645 [00:02<00:09,
[| 1590/7645 [00:02<00:09, 661.84it/s] 22% N | 1663/7645 [00:02<00:08,
[| 1732/7645 [00:02<00:09, 616.68it/s] 23% | 1795/7645 [00:02<00:09,
[| 1881/7645 [00:02<00:08, 683.66it/s] 26Y%| I 1966/7645 [00:02<00:07,
[] | 2040/7645 [00:03<00:07, 728.31it/s] 28% | N | 2114/7645 [00:03<00:07,
[| 2193/7645 [00:03<00:07, 735.55it/s] 30%| | 2267/7645 [00:03<00:07,
[| 2343/7645 [00:03<00:07, 716.24it/s] 32%| | 2416/7645 [00:03<00:07
I | 2486/7645 [00:03<00:07, 672.32it/s] 33%| NN | 2554/7645 [00:03<00:0°
I | 2620/7645 [00:03<00:07, 652.39it/s] 36%| NN | 2721/7645 [00:04<00: O¢
[] | 2797/7645 [00:04<00:06, 742.59it/s] 38% ! N | 2876/7645 [00:04<00: Ot
[] | 2954/7645 [00:04<00:06, 762.47it/s] 40%| NN | 3031/7645 [00:04<00: 0t
] | 3103/7645 [00:04<00:06, 686.15it/s] 42% | NGcGcG_G | 3181/7645 [00:04<00:C
[] | 3258/7645 [00:04<00:06, 725.51it/s] 44| NG | 3354/7645 [00:04<00:
[] | 3433/7645 [00:04<00:05, 755.69it/s] 46% | NGcGc_N_cG | 3509/7645 [00:05<00:
[] | 3583/7645 [00:05<00:05, 702.14it/s] 48| NG | 3654/7645 [00:05<00:
[| 3724/7645 [00:05<00:05, 671.85it/s] 50Y% | NN | 3805/7645 [00:05<00:
I | 3876/7645 [00:05<00:05, 696.83it/s] 527 NNG_G_cG | 3946/7645 [00:05<00
I | 4018/7645 [00:05<00:05, 653.67it/s] 54% | NG | 4091/7645 [00:05<0
[| 4160/7645 [00:06<00:05, 652.43it/s] 55Y% | NNGcG_G | 4226/7645 [00:06<0
[| 4289/7645 [00:06<00:05, 604.25it/s] 57%| NG | 4358/7645 [00:06<0
[| 4431/7645 [00:06<00:04, 654.44it/s] 59% | NNGccNGNGNG | 4503/7645 [00:06<0
] | 4594/7645 [00:06<00:04, 740.72it/s] 61| NN | 4669/7645 [00:06<0
I | 4739/7645 [00:06<00:04, 673.89it/s] 63% | NNGINGNG | 4816/7645 [00:07<
I | 4886/7645 [00:07<00:04, 674.43it/s] 65Y% | NG | 4954/7645 [00:07<
] | 5020/7645 [00:07<00:04, 644.84it/s] 67%| N | 5085/7645 [00:07<
B | 5:51/7645 [00:07<00:03, 642.74it/s] 6s% | | 5216/7645 [00:07<
B | 5276/7645 [00:07<00:04, 570.35it/s] 70%| N | 5349/7645 [00:07<
BEEEEBEEE| | 5452/7645 [00:08<00:03, 718.14it/s] 72% /A HHEBHEBE

| 5526/7645 [00:08<00:02, 713.20it/s] 73% | I | 5602/7645 [00:08<00:02, 725.
BEEEEEBEBEI | s676/7645 [00:08<00:02, 697.62it/s] 75% /I HEBHBE

| 5747/7645 [00:08<00:02, 700.44it/s] 76%| ENEGEGEGEGEIEIEIEII | 5518/7645 [00:08<00:02, 669.

EEEEBEEEE | 5s37/7645 [00:08<00:02, 674.16it/s] 7s%/HHHHEBHEBE
B | 5955/7645 [00:08<00:02, 655.44it/s] 79% | | 6027/7645 [00:08<00:02, 670.
EEEEEEEE | 5109/7645 [00:09<00:02, 705.87it/s] s1%/H B HEHENE
B | 6181/7645 [00:09<00:02, 709.62it/s] 2% N | 6264/7645 [00:09<00:01, 737
HEEEEEEBEI | 6350/7645 [00:09<00:01, 772.49it/s] s4% |/ H A HEBHENE
I | 6428/7645 [00:09<00:01, 743.09it/s] 85%| N | 6503/7645 [00:09<00:01, 691.
HEEEEEEEI | s5574/7645 [00:09<00:01, 652.53it/s] 87% | HHEHEHEE
B | 6650/7645 [00:09<00:01, 680.88it/s] 88| NN | 6719/7645 [00:09<00:01, 676.

HEEEEEEEE | s788/7645 [00:10<00:01, 668.24it/s] 90% | I B HEBENE
| 6877/7645 [00:10<00:01, 731.13it/s] 91% | NN | 6951/7645 [00:10<00:00, 710.

BHEEEEEEEE | 023/7645 [00:10<00:00, 712.64it/s] 93% | IIEGIGEGNIGEGIGNBGGEGGEEE
| 7095/7645 [00:10<00:00, 671.13it/s] 94Y% |GG | 7163/7645 [00:10<00:00, 673.30

HBEEEEEEEE | 233/7645 [00:10<00:00, 679.75it/s] 96Y% | IIIEGEGIGIGNGEGIGNEGEE
| 7302/7645 [00:10<00:00, 662.77it/s] 96Y% | KKKGGINNNINGNG@gNE | 7369/7645 [00:10<00:00, 617.57

HEEEEEEEEE | 233/7645 [00:10<00:00, 621.04it/s] 9s% | IIIININEREEEE
| 7498/7645 [00:11<00:00, 623.75it/s] 99Y% | KGGGGINNININING@gNgNoHN | 7561/7645 [00:11<00:00, 614.90

R 6.5/7645 [00:11<00:00, 677.96it/s]

Use Case 3: compute the centrality of authors in the conversation

test_tree : DelabTree = get_test_tree()
metrics = test_tree.get_author_metrics() # returns a map with author ids as keys
for author_id, metrics in metrics.items():
print("centrality of author {} is {}".format(author_id, metrics.betweenness_centrality))

loading data into manager and converting table into trees...
centrality of author john is 0.0

centrality of author james is 0.0

centrality of author mark is 0.16666666666666666

centrality of author steven is 0.0

0%| | 0/1 [00:00<?, ?it/s]1100%| NG| 1/ [00:00<00:00, 92.51it/s]

The result shows, that only mark is central in the sense that he is answered to and has answered.
In bigger trees, this makes more sense.

Library Documentation

For an overview over the different functions, have a look here

Conclusion

Now you should be able to analyze social media trees effectively. For any questions, write me an
email. I am happy to help!

Also I would be happy if someone is interested in doing research and writing a publication with
this library!

Exercises or Challenges (Optional)

Learning exercises are forthcoming! But for now you should click on the binderhub link on the
top to get a notebook in Jupyterlab, where you can play around with the code.

FAQs (Optional)

This will be filled if more people use the library!

Nishi, R., T. Takaguchi, K. Oka, T. Maehara, M. Toyoda, K.-i. Kawarabayashi, and N. Masuda.
2016. “Reply Trees in Twitter: Data Analysis and Branching Process Models.” Social Network
Analysis and Mining 6 (1): 26.

Wang, Y.-C., M. J. M. Joshi, and W. Cohen. 2008. “Recovering Implicit Thread Structure in
Newsgroup Style Conversations.” Proceedings of the International AAAI Conference on Web
and Social Media 2 (1): 152-60.

https://github.com/juliandehne/delab-trees/blob/main/README.md#library-functions

	At a glance
	Table of Content
	Introduction
	Description
	Target Audience
	Prerequisites

	Set-up
	Social Science Usecases
	Sample Input and Output Data
	Tool application
	Use Case 1: Analyze the integrity of the social media conversation
	Use Case 2: Extract Pathways

	Library Documentation
	Conclusion
	Exercises or Challenges (Optional)
	FAQs (Optional)

