
TextPrep
Comparing Tools and Workflows for Data Quality in Basic Text Preprocessing with R

Yannik Peters Kunjan Shah

2024-12-18

At a Glance

In this tutorial you will learn:

1. Enhancing data quality through preprocessing: The tutorial provides a practical
guide on how preprocessing methods, such as automated translation, minor text operations
and stopword removal, can significantly improve the quality of social media data depended
on use case, data types and methods.

2. Comparison of tools, packages and strategies: By systematically evaluating and
comparing different approaches (e.g. different stopword lists), it is highlighted how they
can alter textual content and impact data interpretation and quality.

3. Creation and analysis of preprocessing levels: Defining four preprocessing levels
offers a structured framework to analyze text data at varying degrees of preparation, helping
to understand how preprocessing affects analytical outcomes.

4. Applying certain metrics to assess data quality: Text similarity measures such
as word count or cosine similarity are used to document differences between the various
preprocessing strategies and packages. Also Structural Topic Modeling is used to compare
different preprocessing stages using semantic coherence and exclusivity.

1. Introduction

The digitalisation has led to innovations of research objects and research methods. While statistical
methods for analyzing numerical data have a long tradition, it is especially the automated analysis
of text data that has seen a significant advancements in recent years. Automated text analysis
methods are applied to various data sources, including social media data, news paper articles,
parliamentary speeches, historical texts or literature. In this introduction, we want to focus
on an important, necessary and often times challenging aspect related to data quality in text
data: text preprocessing. Text preprocessing can be defined as all changes made to the text data
after the data collection and before the data analysis. Its main purpose is to bring the raw data
in a form that is then suitable for applying specific research methods, but also to reduce the
likelihood of errors. In this sense, text processing is closely linked to the measurement dimension
of data quality. On the one hand, text processing can help to reduce measurement errors, by
increasing consistency or accuracy. On the other hand, text processing itself can become a source
for potential errors. In the TED-On, the “Total Error Framework for Digital Traces of Human
Behavior On Online Platforms” (Sen et al. 2021) these errors are referred to as trace reduction
errors. According to Sen et al. an example for this error would be: “Researchers might decide
to use a classifier that removes spam, but has a high false positive rate, inadvertently removing
non-spam tweets. They might likewise discard tweets without textual content, thereby ignoring
relevant statements made through hyper-links or embedded pictures/videos” (p. 413).
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In this tutorial we aim to explore different levels of text preprocessing and compare as well as
recommend various packages, tools and functions to use. Churchill and Singh (2021) distinguish
between four levels of text preprocessing.

Preprocessing level Preprocessing operations

Elementary pattern-based
preprocessing

e.g. removal of punctuaction, special characters, symbols,
numbers etc.

Dictionary-based preprocessing e.g. removal of stopwords
Natural language preprocessing e.g. stemming, lemmatization
Statistical preprocessing e.g. removal of tokens with high and low frequency

We will apply operations from the first three preprocessing steps and evaluate how different
choices for these steps impact our data. In this respect, data quality is not only a fixed condition
but also a set of practices: “doing data quality”. In this tutorial, we emphasize the practice of
comparison, i.e. determining which options of preprocessing influence the data (quality) and
how. The types and sequence of text preprocessing steps depend on the nature of the data being
analyzed and the methods applied. For instance, social media data tends to be noisier compared
to more structured sources like newspaper articles or scientific papers. Additionally, the chosen
analytical method significantly influences preprocessing requirements. Methods like LDA demand
extensive preprocessing, while others, such as BERTopic, function effectively with minimal or
no text modifications. In the final step of this tutorial, we will use differently preprocessed
text data to apply Structural Topic Modeling (STM) (Roberts, Stewart, and Tingley 2019) and
compare differences in the analysis. For this purpose, we created a small social media data set
with posts about the Olympic summer games in Paris 2024, supposedly “collected” from the
#Olympics2024. For copyright reasons, we have constructed an artificial data set that does
not contain any real content. The Olympic summer games can be considered a transnational
media event (Hepp 2015), which today is, of course, not only covered by traditional media but is
communicatively accompanied on social media.

2. Set up

First, we will load all relevant libraries. Please ensure to have all relevant packages installed
using the install.packages() command. We will use and also compare functions from
some of the most important text preprocessing and analysis R packages such as quanteda,
stringr, textclean or textTinyR. Additionally, we will incorporate specific packages like
skimr, polyglotr or deeplr for special purposes.

library(tidyverse)
library(quanteda)
library(textclean)
library(textTinyR)
library(tidytext)
library(skimr)
library(polyglotr)
library(deeplr)
library(stopwords)
library(stm)

Finally, we will then load our artificial dataset from the Olympic summer games.
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url <- "https://raw.githubusercontent.com/YannikPeters/DQ_Tool_TextPreprocessing/main/data/Olympics_Summer_1_2024.csv"
olympics_data <- readr::read_csv(url, locale = locale(encoding = "Latin1"))
olympics_data

# A tibble: 150 × 12
no. tweet_id user_id timestamp tweet_text subtopic language retweet_count

<dbl> <dbl> <dbl> <chr> <chr> <chr> <chr> <dbl>
1 1 226 139 09-08-2024… The pool … Swimmin… en 12
2 2 68257 133 31-07-2024… The fight… Doping … en 47
3 3 44351 197 06-08-2024… THE JOY O… Gold Me… en 28
4 4 95759 170 08-08-2024… Quel chem… Gold Me… fr 34
5 5 11173 106 27-07-2024… The inten… Wrestli… en 46
6 6 23334 177 28-07-2024… We must s… Doping … en 39
7 7 49688 160 04-08-2024… The culmi… Gold Me… en 8
8 8 39066 196 01-08-2024… Cheering … Maratho… en 31
9 9 81586 198 31-07-2024… Jede Leis… Athlete… de 9
10 10 45338 134 03-08-2024… What a ga… Basketb… en 16
# � 140 more rows
# � 4 more variables: like_count <dbl>, reply_count <dbl>, quote_count <dbl>,
# source <chr>

3. Application of tools and use case

3.1 Basic data (quality) checks

Let’s start with checking out the basic structure of our data set.

str(olympics_data)

spc_tbl_ [150 × 12] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
$ no. : num [1:150] 1 2 3 4 5 6 7 8 9 10 ...
$ tweet_id : num [1:150] 226 68257 44351 95759 11173 ...
$ user_id : num [1:150] 139 133 197 170 106 177 160 196 198 134 ...
$ timestamp : chr [1:150] "09-08-2024 20:14" "31-07-2024 05:42" "06-08-
2024 14:25" "08-08-2024 06:41" ...
$ tweet_text : chr [1:150] "The pool is alive with excitement! Who will claim victory in #SwimmingOlympics? The competition is fierce! http"| __truncated__ "The fight against doping is ongoing! Let's support our athletes by promoting #CleanSport at #Olympics2024. #Dop"| __truncated__ "THE JOY OF WINNING A #GOLDMEDAL IS UNMATCHED! http://www.jones.com/ WHO ARE YOU SUPPORTING AT #OLYMPICS2024? #O"| __truncated__ "Quel chemin parcouru ! Les gagnants de la Gold Medal nous ont tous rendus fiers ! #Olympics2024" ...
$ subtopic : chr [1:150] "Swimming Events" "Doping Awareness" "Gold Medal Moments" "Gold Medal Moments" ...
$ language : chr [1:150] "en" "en" "en" "fr" ...
$ retweet_count: num [1:150] 12 47 28 34 46 39 8 31 9 16 ...
$ like_count : num [1:150] 5 54 4 40 51 52 20 93 44 30 ...
$ reply_count : num [1:150] 7 2 10 0 7 7 0 2 1 7 ...
$ quote_count : num [1:150] 1 2 8 0 5 9 8 2 6 2 ...
$ source : chr [1:150] "Twitter Web App" "Twitter Web App" "Twitter for iPhone" "Twitter for iPhone" ...
- attr(*, "spec")=
.. cols(
.. no. = col_double(),
.. tweet_id = col_double(),
.. user_id = col_double(),
.. timestamp = col_character(),
.. tweet_text = col_character(),
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.. subtopic = col_character(),

.. language = col_character(),

.. retweet_count = col_double(),

.. like_count = col_double(),

.. reply_count = col_double(),

.. quote_count = col_double(),

.. source = col_character()

.. )
- attr(*, "problems")=<externalptr>

Here we find 13 variables and 150 observations.

summary(olympics_data)

no. tweet_id user_id timestamp
Min. : 1.00 Min. : 226 Min. :100.0 Length:150
1st Qu.: 38.25 1st Qu.:24485 1st Qu.:128.0 Class :character
Median : 75.50 Median :49100 Median :149.5 Mode :character
Mean : 75.50 Mean :50367 Mean :151.1
3rd Qu.:112.75 3rd Qu.:73639 3rd Qu.:177.0
Max. :150.00 Max. :99451 Max. :200.0
tweet_text subtopic language retweet_count

Length:150 Length:150 Length:150 Min. : 0.00
Class :character Class :character Class :character 1st Qu.:14.25
Mode :character Mode :character Mode :character Median :28.00

Mean :26.85
3rd Qu.:40.00
Max. :50.00

like_count reply_count quote_count source
Min. : 0.00 Min. : 0.00 Min. : 0.000 Length:150
1st Qu.:17.25 1st Qu.: 3.00 1st Qu.: 3.000 Class :character
Median :38.50 Median : 7.00 Median : 5.000 Mode :character
Mean :40.69 Mean : 6.86 Mean : 5.207
3rd Qu.:61.75 3rd Qu.:10.00 3rd Qu.: 8.000
Max. :99.00 Max. :15.00 Max. :10.000

When running the summary() function, the overview might become difficult to interpret depending
on the size of the dataframe. Therefore, we recommend R tools that provide basic data quality
reports and present the results in a clearer format, such as the skimr package. With skimr, you
can obtain an overview of the various variables of our data set, including descriptive statistics
and missing values.

skimr::skim(olympics_data)

Table 2: Data summary

Name olympics_data
Number of rows 150
Number of columns 12
_______________________
Column type frequency:
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character 5
numeric 7
________________________
Group variables None

Variable type: character

skim_vari-
able n_missing

com-
plete_rate min max empty n_unique whitespace

timestamp 0 1 16 16 0 150 0
tweet_text 0 1 73 171 0 145 0
subtopic 0 1 13 24 0 10 0
language 0 1 2 2 0 3 0
source 0 1 15 19 0 4 0

Variable type: numeric

skim_vari-
able

n_miss-
ing

com-
plete_rate mean sd p0 p25 p50 p75 p100 hist

no. 0 1 75.50 43.45 1 38.25 75.5 112.75 150 ▇▇
▇
▇▇

tweet_id 0 1 50367.45 28499.46 226 24485.00 49099.5 73639.00 99451 ▇▇
▇
▇▇

user_id 0 1 151.09 29.09 100 128.00 149.5 177.00 200 ▆▇
▆
▇▆

retweet_count 0 1 26.85 14.50 0 14.25 28.0 40.00 50 ▆▆
▇
▇▇

like_count 0 1 40.69 26.16 0 17.25 38.5 61.75 99 ▇▇
▇
▆▂

re-
ply_count

0 1 6.86 4.61 0 3.00 7.0 10.00 15 ▇▅
▆
▃▅

quote_count 0 1 5.21 3.12 0 3.00 5.0 8.00 10 ▇▇
▇
▅▇

3.2 Handling multilingual text data

As the Olympic games are a transnational media event, it is not surprising to receive a multilingual
data set. The primary challgenge with multilingual data sets is that common CSS research
methods, such as topic modeling or sentiment analysis typically expect text data to be in a single
language.
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Note
If you use this tutorial on your own data set and it is not a multilingual one, you can
skip this part and continue with 3.3.

There are various strategies to handle multilingual data sets. The chosen strategy should depend
on the specific context, the methods applied and the research design and questions. We can
distinguish three or four main strategies for working with multilingual data sets (see Hauke Licht
and Fabienne Lind (2023), Lind et al. (2021)). For this short version, we will discuss three
primary strategies: 1) selecting cases, 2) working with multiple language data sets and 3) using
machine translation.

Important
An alternative, fourth way would be to apply methods which are able to analyze
multilingual text data. These methods are usually based on multilingual word or
sentence embedding. Examples for these strategies can be found in Licht (2023) or
Chan et al. (2020).

1) Selecting cases: a single language
This approach involves selecting cases that contain documents in only one language. For our
Twitter/X data set, we could for instance remove all postings that are not in English.

olympics_data_en <- olympics_data %>% dplyr::filter(language == "en")
table(olympics_data_en$language)

en
127

Of course, this strategy might lead to a representation error as specific content is systematically
excluded from analysis (in our case twenty tweets). Therefore, let’s explore the other strategies.
2) Multiple single language data sets
Another way of dealing with multilingual data sets is to create language-specific subsamples of
our data. The main advantage of this strategy is, that no content is lost due to exclusion or
translation errors. However, compared to the other methods there are more validation steps
required for each single language data set (for detailed information see Hauke Licht and Fabienne
Lind (2023), Lind et al. (2021)). As we have already created a data set which only contains
English tweets, we will create two additional dataframes for German and French tweets.

olympics_data_de <- olympics_data %>% dplyr::filter(language == "de")
table(olympics_data_de$language)

de
13

olympics_data_fr <- olympics_data %>% dplyr::filter(language == "fr")
table(olympics_data_fr$language)

fr
10
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We only find a few documents that are not in English resulting in very small language subsets.
Therefore, this strategy might not be the best for our example data.
3) (Machine) Translation
The third option of dealing with multilingual datasets is to translate the non-English speaking
tweets into English. Since this is a just a small, artificial, sample data set, we could actually
translate the few tweets manually. In a real case scenario however, analyzing a data set of
millions of tweets, you would typically use an automated translation algorithm or method. The
main advantage of the translation method is to generate one singular data set, which can then be
analyzed using one model. This approach also requires fewer resources. The main disadvantage
lies in the potential for translation errors. It is therefore necessary to evaluate the translation
method used. For this purpose, let’s translate all non-English tweets with both tools in order to
compare the results. The most common translation tools are Google Translator and DeepL.
First, we will use the polyglotr and deeplr packages to translate the German text.

#Translation of German posts and creation of translated dataframe using Google Translate
translation_google_de <- polyglotr::google_translate(olympics_data_de$tweet_text, target_language = "en", source_language = "de")
translation_google_de <- sapply(translation_google_de, function(x) x[[1]])
olympics_data_de_google <- olympics_data_de
olympics_data_de_google$tweet_text <- translation_google_de

To access the DeepL API, you need a developer account. You can use this link to reach the
registration page. A free account allows you to translate up to 500,000 characters per month and
provides access to the DeepL Rest API. To translate text data using DeepL in R, you first need
the API-key. When signing up for a developer account, you will automatically receive this key.

#Translation of German posts and creation of translated dataframe using DeepL
translation_deepl_de <- deeplr::translate2(olympics_data_de$tweet_text, target_lang = "EN", auth_key = my_key)
olympics_data_de_deepl <- olympics_data_de
olympics_data_de_deepl$tweet_text <- translation_deepl_de

Note
For this code to work, make sure that you create a my_key object containing your
API key.
my_key <- “Your key”

Let’s compare the results for the German tweets.

head(olympics_data_de_google$tweet_text)

[1] "Every performance at Olympics24 underlines the hard work and commitment of our athletes! #Olympics2024"
[2] "What a journey it was! The gold medalists made us all proud! #Olympics2024"
[3] "Integrity in sport is important! Let's promote fair competition and say no to doping! #Olympics2024"
[4] "History is being made at the Olympic Swimming Games! Every stroke counts as athletes dive for glory! #Olympics2024"
[5] "It's incredible what's possible in basketball! Who is your favorite team? #Olympics2024"
[6] "The dedication of the athletes to their sport is admirable! The 2024 Olympic Games are a platform for great things! #Olympics2024"

head(olympics_data_de_deepl$tweet_text)
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[1] "Every performance at Olympics24 highlights the hard work and dedication of our athletes! #Olympics2024"
[2] "What a journey it was! The gold medal winners have made us all proud! #Olympics2024"
[3] "Integrity in sport is important! Let's promote fair competition and say no to doping! #Olympics2024"
[4] "History is made at the Swimming Olympics! Every stroke counts as athletes dive for glory! #Olympics2024"
[5] "It's unbelievable what's possible in basketball! Who is your favorite team? #Olympics2024"
[6] "The athletes' dedication to their sport is admirable! The 2024 Olympic Games are a platform for great things! #Olympics2024"

A quick comparison shows that the translations seem pretty similar. We can also use certain
metrics to determine the degree of similarity. For this example, we will apply cosine similarity.
First, we need to unlist our text data, as the COS_TEXT function from the textTinyR package
requires a vector as an input.

google_translation_de <- unlist(translation_google_de)
deepl_translation_de <- unlist(translation_deepl_de)

cosine_similarities_de <- textTinyR::COS_TEXT(google_translation_de, deepl_translation_de, separator = " ")

cosine_similarities_de

[1] 0.8571429 0.8593378 1.0000000 0.8838835 0.9166667 0.9100315 1.0000000
[8] 0.9058216 0.8839600 0.9655172 0.9233805 0.7825856 0.9285714

mean(cosine_similarities_de)

[1] 0.9089922

With a mean cosine similarity of 0.90 on a scale from 0 to 1, the translations from Google
Translate and DeepL are indeed very similar. We can apply the same process for the French
postings.

#Translation of French posts and creation of translated dataframe using Google Translate
translation_google_fr <- polyglotr::google_translate(olympics_data_fr$tweet_text, target_language = "en", source_language = "fr")
translation_google_fr <- sapply(translation_google_fr, function(x) x[[1]])
olympics_data_fr_google <- olympics_data_fr
olympics_data_fr_google$tweet_text <- translation_google_fr

#Translation of French posts and creation of translated dataframe using DeepL
translation_deepl_fr <- deeplr::translate2(olympics_data_fr$tweet_text, target_lang = "EN", auth_key = my_key)
olympics_data_fr_deepl <- olympics_data_fr
olympics_data_fr_deepl$tweet_text <- translation_deepl_fr

#compare Google Translate und Deepl translation manually
olympics_data_fr_google$tweet_text

[1] "What a journey! The Gold Medal winners made us all proud! #Olympics2024"
[2] "Integrity in sport matters! Let's promote fair competition and say no to doping! #Olympics2024"
[3] "Every Takedown Counts! The competitive spirit is alive at Wrestling2024! #Olympics2024"
[4] "What a journey we have come! Join us for the Closing Ceremony to relive these magical moments. #Olympics2024"
[5] "The teamwork in basketball is incredible! Go for gold! #Olympics2024"
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[6] "A race of endurance and spirit! Who will win the Paris Marathon? #Olympics2024"
[7] "The countdown to the fantastic Welcome Ceremony has begun! Are you ready to witness a spectacular spectacle? #Olympics2024"
[8] "What a display of talent! These athletes are making their mark at the 2024 Olympics! #Olympics2024"
[9] "Celebrating the athletes who made their dreams come true by winning gold medals! #Olympics2024"
[10] "Exciting times await us in basketball at the 2024 Olympics! Let the Games begin! #Olympics2024"

olympics_data_fr_deepl$tweet_text

[1] "What a long way we've come! The Gold Medal winners have made us all proud! #Olympics2024"
[2] "Integrity in sport is important! Let's promote fair competition and say no to doping! #Olympics2024"
[3] "Every Takedown counts! The spirit of competition is alive and well at Wrestling2024! #Olympics2024"
[4] "We've come a long way! Join us for the Closing Ceremony to relive these magical moments. #Olympics2024"
[5] "The teamwork that goes into basketball is incredible! Go for the gold! #Olympics2024"
[6] "A race of endurance and spirit! Who will win the Paris Marathon? #Olympics2024"
[7] "The countdown to the fantastic welcome ceremony has begun! Are you ready for a great show? #Olympics2024"
[8] "What a demonstration of talent! These athletes are making their mark at the 2024 Olympics! #Olympics2024"
[9] "Let's celebrate the athletes who made their dreams come true by winning gold medals! #Olympics2024"
[10] "Exciting times await us in basketball at the 2024 Olympics! Let the Games begin! #Olympics2024"

#unlist french translation data
google_translation_fr <- unlist(translation_google_fr)
deepl_translation_fr <- unlist(translation_deepl_fr)

#calculate cosine similarities for French translation data
cosine_similarities_fr <- textTinyR::COS_TEXT(google_translation_fr, deepl_translation_fr, separator = " ")

cosine_similarities_fr

[1] 0.7938566 0.8970852 0.7252407 0.7431605 0.7893522 1.0000000 0.7050240
[8] 0.9375000 0.8970852 1.0000000

mean(cosine_similarities_fr)

[1] 0.8488304

With an average cosine similarity of 0.85, the French translation is slightly less similar than the
German one.
If we combine the translated data sets with the original English language data set and then
compare the cosine similarity, it is of course higher with 0,98. So in this case, the difference of our
combined data set is minimal. This would, of course, be different if the amount of non-English
content were higher.

olympics_data_en_deepl_full <- rbind(olympics_data_en, olympics_data_de_deepl, olympics_data_fr_deepl)
olympics_data_en_google_full <- rbind(olympics_data_en, olympics_data_de_google, olympics_data_fr_google)

cosine_similarities_full <- textTinyR::COS_TEXT(olympics_data_en_deepl_full$tweet_text, olympics_data_en_google_full$tweet_text, separator = " ")
mean(cosine_similarities_full)

[1] 0.9820347

9



The key question for us is now: Should we use the translation of DeepL or Google Translate?
Generally, DeepL is considered to be more accurate than Google Translate (e.g. here). Still,
Google Translate has proven to be highly accurate for calculating topic models (Vries, Schoonvelde,
and Schumacher 2018). In current research, both tools are considered suitable. For the translation
of Spanish idiomatic expressions into English, Hidalgo-Ternero (2021) found DeepL to perform
slightly better, with an average accuracy rate of 89%, than Google Translate at 86%. Sebo and
Lucia (2024) did not find significant differences in the accuracy of the two tools. One of the
major advantages of Google Translate is that it can be applied to significantly more languages
than DeepL. As we had to translate only two languages in our example data, we will use DeepL
for this example.

url_2 <- "https://raw.githubusercontent.com/YannikPeters/DQ_Tool_TextPreprocessing/main/data/olympics_data_en_deepl_full.csv"
olympics_data_en_full <- readr::read_csv(url_2, locale = locale(encoding = "Latin1"))
olympics_data_en_full

# A tibble: 150 × 12
no. tweet_id user_id timestamp tweet_text subtopic language retweet_count

<dbl> <dbl> <dbl> <chr> <chr> <chr> <chr> <dbl>
1 1 226 139 09-08-2024… The pool … Swimmin… en 12
2 2 68257 133 31-07-2024… The fight… Doping … en 47
3 3 44351 197 06-08-2024… THE JOY O… Gold Me… en 28
4 5 11173 106 27-07-2024… The inten… Wrestli… en 46
5 6 23334 177 28-07-2024… We must s… Doping … en 39
6 7 49688 160 04-08-2024… The culmi… Gold Me… en 8
7 8 39066 196 01-08-2024… Cheering … Maratho… en 31
8 10 45338 134 03-08-2024… What a ga… Basketb… en 16
9 11 24439 117 11-08-2024… We must s… Doping … en 11
10 12 32959 110 06-08-2024… The spiri… Maratho… en 44
# � 140 more rows
# � 4 more variables: like_count <dbl>, reply_count <dbl>, quote_count <dbl>,
# source <chr>

Important
The translations of DeepL and Google Translate may differ slightly with each new
API request due to coincidence or updates to the model. Especially when using Bag
of Word models, this can lead to deviations depending on the proportion of translated
text. Recent literature also highlighted the importance of using open source models
for extrinsic data quality values like reproducibility (Chan et al. 2020), especially
since they perform only slightly less accurate compared to the commercial ones (Licht
et al. 2024). In R, the authors have currently not found any convincing open source
alternative integrated in packages. Open source models like OpusMT can be used in
Python via Hugging Face. In R, these models can be accessed via the reticulate
package, which offers a connection to Python applications (see here). In future, a
another option might be the text package, in which the translation function still has
an experimental status.

3.3 Minor text operations

Minor text operations and removing stopwords in text preprocessing are highly dependent on
two factors:
a) The text data type
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Compared to other types of text data, such as newspaper articles or literature, social media data
often features a rather informal communication style and specific characteristics. For instance,
the proportion of abbreviations, slang, spelling mistakes, or emojis is usually high, which can be
considered as noise (not errors) in the data.
b) The specific method to be applied
Different methods in Computational Social Science require varying strategies of text preprocessing.
Methods that use a bag of words approach (BoW), for example, tend to remove a rather high
number of different special characters, as these are not regarded as meaningful for interpretation,
but rather as disruptive. In contrast, approaches that incorporate context and semantics, such
as modern transformer-based models tend to retain characteristics like punctuation marks and
generally require less preprocessing steps.
In our case, we will later apply STM, which is based on a bag of word approach. Therefore, we
will apply some operations like removing hashtags, punctuaction or URLs. Before we do so, let’s
check the length of our documents.

sum(stringr::str_count(olympics_data_en_full$tweet_text, '\\w+'))

[1] 2723

First, we will remove all hashtags from the original text and save them in a separate column.
After compareing functions from multiple packages, we decided to use the one from textclean,
because the ones from the other packages performed slightly less accurate (e.g. some were unable
to remove punctuation at the end of an hashtag within a sentence). Removing hashtags from the
text is advisable in our case, as we are analyzing tweets that all contain #Olympics2024. In a
topic model, #Olympics2024 would likely be closely associated to every topic and would not add
significant value to the interpretation.

olympics_data_en_full_rem <- olympics_data_en_full %>%
dplyr::mutate(

# Extract hashtags
Hashtags = sapply(str_extract_all(`tweet_text`, "#\\w+"), paste, collapse = " "),

# Remove hashtags from the original text
`tweet_text` = textclean::replace_hash(`tweet_text`, replacement = "")

) %>%
# Clean up any extra whitespace left after removing hashtags

mutate(`tweet_text` = stringr::str_squish(`tweet_text`))

sum(stringr::str_count(olympics_data_en_full_rem$tweet_text, '\\w+'))

[1] 2271

Removing the hashtags has reduced our total word count by more than 400 words. In addition to
the hashtags, we also want to remove special characters such as URLs, punctuation or usernames
as they do not add relevant information in BoW models like LDA or STM. Instead, they rather
increase the number of words (tokens) to analyze and therefore the calculation time. Again, we
will store the @-mentions in a separate column to preserve information. Finally, as a last step of
minor text operations, we will convert the entire text to lowercase in order to ensure the same
word is not treated differently due to capitalization.
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# Create a new column for usernames and then clean the text
olympics_data_en_full_rem <- olympics_data_en_full_rem %>%

dplyr::mutate(
#Store the usernames in a new column
user_mentions = stringr::str_extract_all(tweet_text, "@\\w+") %>%

sapply(paste, collapse = ", "), # Extract usernames with '@'

# Clean the text
tweet_text = gsub("(RT|via)((?:\\b\\W*@\\w+)+)", "", tweet_text) %>% #Remove retweets

gsub("https?://\\S+", "", .) %>% # Remove URLs
gsub("@\\w+", "", .) %>% # Remove @usernames from the text
gsub("[\r\n]", " ", .) %>% # Remove line breaks
gsub("[[:punct:]]+", " ", .) %>% # Remove punctuation
gsub("\\s+", " ", .) %>% # Reduce multiple spaces to a single space
trimws(.) %>% # Trim whitespace from the beginning and end
tolower() # Convert text to lowercase

)

head(olympics_data_en_full_rem$tweet_text)

[1] "the pool is alive with excitement who will claim victory in the competition is fierce"
[2] "the fight against doping is ongoing let s support our athletes by promoting at"
[3] "the joy of winning a is unmatched who are you supporting at olympics 2024"
[4] "the intensity of the matches is captivating every match tells a unique story"
[5] "we must stand united against doping the spirit of fair play should shine at"
[6] "the culmination of years of effort results in these unforgettable moments"

sum(stringr::str_count(olympics_data_en_full_rem$tweet_text, '\\w+'))

[1] 2194

3.4 Removing stopwords

After doing the minor steps of text preprocessing, we now want to focus on removing stopwords
as they can highly impact the outcome of certain models. Stopwords are commonly understood
to as frequently used words that add only little or no meaning for interpretation. Many popular
text mining packages in R like quanteda offer predefined stopword lists. These lists are often
applied by default, without considering their specifics and peculiarities. For example, (Nothman,
Qin, and Yurchak 2018)identified numerous “surprising omissions (e.g. hasn’t but no hadn’t) and
inclusions (e.g. computer)”. Also Hvitfeldt and Silge (2021b) found out inconsistencies in specific
stopword lists. For example, the SMART stopword list includes “he’s” but not “she’s”. Therefore,
it is essential to evaluate the impact of stopword lists in relation to the specific text data. In
this tutorial, we will compare three commonly used and general stopword lists of the stopwords
package: NLTK, SMART and Stopwords ISO. Altough they overlap and can be integrated,
stopwords offers a broader selection of different lists compared to general text analysis packages
with build-in stopword lists. Let’s compare now the three lists following first the procedure of
Hvitfeldt and Silge (2021b).

length(stopwords(source = "nltk"))

[1] 179
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length(stopwords(source = "smart"))

[1] 571

length(stopwords(source = "stopwords-iso"))

[1] 1298

It becomes clear that the lists differ significantly in length. While NLTK is comparatively short,
Stopwords ISO contains more than seven times as many words. Let’s now examine which words
the three lists would exclude to highlight the differences.

olympics_data_en_full_nltk <- olympics_data_en_full_rem
olympics_data_en_full_smart <- olympics_data_en_full_rem
olympics_data_en_full_iso <- olympics_data_en_full_rem

#function to extract stopwords
extract_stopwords <- function(text, source) {

# Get stopwords for the specified source
stops <- stopwords::stopwords(language = "en", source = source)
# Split into words
words <- text %>%

strsplit("\\s+") %>%
unlist()

# Find intersection with stopwords
found_stops <- intersect(words, stops)
# Return as string
paste(found_stops, collapse = ", ")

}
# Apply extraction for each source
olympics_data_en_full_nltk <- olympics_data_en_full_nltk %>%

dplyr::mutate(
nltk_stopwords = sapply(tweet_text, extract_stopwords, source = "nltk"))

olympics_data_en_full_smart <- olympics_data_en_full_smart %>%
dplyr::mutate(

smart_stopwords = sapply(tweet_text, extract_stopwords, source = "smart"))

olympics_data_en_full_iso <- olympics_data_en_full_iso %>%
dplyr::mutate(

iso_stopwords = sapply(tweet_text, extract_stopwords, source = "stopwords-iso"))

#number of stopwords (unique stopwords per row)
sum(stringr::str_count(olympics_data_en_full_nltk$nltk_stopwords, '\\w+'))

[1] 914

sum(stringr::str_count(olympics_data_en_full_smart$smart_stopwords, '\\w+'))

[1] 1065
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sum(stringr::str_count(olympics_data_en_full_iso$iso_stopwords, '\\w+'))

[1] 1147

As expected, for our artificial data set, the Stopwords ISO list would remove the highest number of
words from our text. Even though it contains more than twice as many words as the SMART list,
the difference between the two lists is only 83 words. The larger gap is observed between SMART
and NLTK. This is likely due to the fact that certain shared stopwords are highly represented
across many tweets, while some of the unique words of the respective lists occur relatively rarely.
Let’s now apply the three lists and compare the similarity between the procrossed text columns.

remove_stopwords <- function(data, text_column, stopword_source) {
# Get stopwords from the stopwords package
stops <- stopwords::stopwords(language = "en", source = stopword_source)

# Remove stopwords from the specified text column
data[[text_column]] <- sapply(data[[text_column]], function(text) {
words <- strsplit(text, "\\s+")[[1]] # Split text into words
filtered_words <- setdiff(words, stops) # Remove stopwords
paste(filtered_words, collapse = ", ") # Reassemble text without stopwords

})

return(data)
}

# Example usage
olympics_data_en_full_nltk <- remove_stopwords(olympics_data_en_full_nltk, "tweet_text", "nltk")
olympics_data_en_full_smart <- remove_stopwords(olympics_data_en_full_smart, "tweet_text", "smart")
olympics_data_en_full_iso <- remove_stopwords(olympics_data_en_full_iso, "tweet_text", "stopwords-iso")

# Calculating cosine similarity
cosine_similarities_nltk_smart <- textTinyR::COS_TEXT(olympics_data_en_full_nltk$tweet_text, olympics_data_en_full_smart$tweet_text, separator = " ")
cosine_similarities_nltk_iso <- textTinyR::COS_TEXT(olympics_data_en_full_nltk$tweet_text, olympics_data_en_full_iso$tweet_text, separator = " ")
cosine_similarities_smart_iso <- textTinyR::COS_TEXT(olympics_data_en_full_smart$tweet_text, olympics_data_en_full_iso$tweet_text, separator = " ")

mean(cosine_similarities_nltk_smart)

[1] 0.9181705

mean(cosine_similarities_nltk_iso)

[1] 0.8658007

mean(cosine_similarities_smart_iso)

[1] 0.9386924

As expected, the similarity between NLTK and ISO is the lowest, while it is highest between
SMART and ISO. Even though the similarities are relatively high, it becomes evident that using
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specific stopword lists leads to changes in your corpus and subsequently affects your analysis.
Therefore, it is crucial to evaluate which lists work best for our data set, use case and the method
to be applied. For this reason, we will identify the words that have been removed exclusively by
one specific list.

# Combine the three stopword variables into one data frame
combined_df <- data.frame(nltk_stopwords = olympics_data_en_full_nltk$nltk_stopwords,

smart_stopwords = olympics_data_en_full_smart$smart_stopwords,
iso_stopwords = olympics_data_en_full_iso$iso_stopwords,
stringsAsFactors = FALSE)

# Function to create a unique word list from a string
get_unique_words <- function(column) {

unique(unlist(stringr::str_split(column, ",\\s*"))) # Split by commas and remove spaces
}

# Create sets of unique words for each column
words_nltk <- get_unique_words(combined_df$nltk_stopwords)
words_smart <- get_unique_words(combined_df$smart_stopwords)
words_iso <- get_unique_words(combined_df$iso_stopwords)

# Words only in column nltk_stopwords
unique_nltk <- setdiff(words_nltk, union(words_smart, words_iso))

# Words only in column smart_stopwords
unique_smart <- setdiff(words_smart, union(words_nltk, words_iso))

# Words only in column iso_stopwords
unique_iso <- setdiff(words_iso, union(words_nltk, words_smart))

# Display the results
cat("Words only in nltk_stopwords:", unique_nltk, "\n")

Words only in nltk_stopwords:

cat("Words only in smart_stopwords:", unique_smart, "\n")

Words only in smart_stopwords:

cat("Words only in iso_stopwords:", unique_iso, "\n")

Words only in iso_stopwords: years results line put make work home made proud join top importance end shown opening world making free beginning high year test giving begin important great things give show long

It appears that only the ISO list removed unique words. Among these words, we find terms
that hold interpretative meaning for our #olympics24 data set such as “results”, “world”, “top”,
“proud”, “home”, “show”, “test” or “beginning”. This indicates that Stopwords ISO is not suitable
for our use case. Let’s now compare now only NLTK and SMART in order to determine the best
option for our analysis. First, we will identify the unique words removed by NLTK but not by
SMART, and vice versa.

15



get_unique_words_2 <- function(column) {
unique(unlist(stringr::str_split(column, ",\\s*"))) # Split by commas and remove spaces Leerzeichen

}

# Create sets of unique words for each column
words_nltk <- get_unique_words(combined_df$nltk_stopwords)
words_smart <- get_unique_words(combined_df$smart_stopwords)

# Words only in column nltk_stopwords
unique_nltk <- setdiff(words_nltk, words_smart)

# Words only in column smart_stopwords
unique_smart <- setdiff(words_smart, words_nltk)

# Display the results
cat("Words only in nltk_stopwords:", unique_nltk, "\n")

Words only in nltk_stopwords: ve

cat("Words only in smart_stopwords:", unique_smart, "\n")

Words only in smart_stopwords: let every must first keeps us taken take say last towards comes together truly come behind like never something else best believe nothing new yes possible go way well goes welcome

It becomes clear that SMART removes more words without any substantial meaning. However,
it still includes some words that could be meaningful for use case, such as first, last, best or
together. Additionally, the token “ve” is removed by NLTK but not by SMART. This difference
arises because SMART and NLTK use different strategies for handling contradictions.

setdiff(stopwords::stopwords(source = "nltk"),
stopwords::stopwords(source = "smart"))

[1] "she's" "that'll" "don" "should've" "ll" "ve"
[7] "ain" "aren" "couldn" "didn" "doesn" "hadn"
[13] "hasn" "haven" "isn" "ma" "mightn" "mightn't"
[19] "mustn" "mustn't" "needn" "needn't" "shan" "shan't"
[25] "shouldn" "wasn" "weren" "won" "wouldn"

NLTK also retains word fragments after removing punctuation like “don”, “ll” or “ve”. Since we
have already removed punctuation, we do need to include these forms. A good strategy could
therefore be to construct a customized stopword list based on both lists. This would involve
incorparating the relevant, unique NLTK words in SMART while excluding words from SMART
thate are meaningful for our subject.

#safe SMART stopword list as an vector
stopwords_smart <- stopwords::stopwords("en", source = "smart")

#create additional word lists
additional_words <- c("don", "ll", "ve", "ain", "aren", "couldn", "didn", "doesn", "hadn", "hasn", "haven", "isn", "ma", "mightn", "mustn", "needn", "shan", "shouldn", "wasn", "weren", "won", "wouldn")

#create a list of word to be removed from SMART
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words_to_remove <- c("against", "best", "better", "first", "fourth", "greetings", "last", "second", "third", "welcome")

#adds additional words
stopwords_smart_adapted <- unique(c(stopwords_smart, additional_words))

#calculates word counts of SMART stopword list and adapted SMART list after adding words from NLTK
length(stopwords_smart)

[1] 571

length(stopwords_smart_adapted)

[1] 592

#removes words from the words_to_remove list
stopwords_smart_adapted <- setdiff(stopwords_smart_adapted, words_to_remove)

#calculates word counts of adapted SMART list after adding and removing specific words
length(stopwords_smart_adapted)

[1] 583

Let’s now apply our case-specific stopword list to the text.

olympics_data_en_full_smart_adapted <- olympics_data_en_full_rem

remove_stopwords_2 <- function(data, text_column, new_column_removed = "stopwords_smart_adapted") {
# Stopwort-Liste (diese muss zuvor erstellt werden)
stops <- stopwords_smart_adapted

# new column for removed stopwords
data[[new_column_removed]] <- NA

# remove stopwords and save results
results <- lapply(data[[text_column]], function(text) {
words <- strsplit(text, "\\s+")[[1]] # split text in words
filtered_words <- words[words %in% stops] # found stopwords
cleaned_words <- setdiff(words, stops) # text without stopwords
list(

cleaned_text = paste(cleaned_words, collapse = " "), # found stopwords as list
filtered_words = paste(filtered_words, collapse = " ") # removed stopwords as list

)
})

# save results in column
data[[text_column]] <- sapply(results, function(res) res$cleaned_text)
data[[new_column_removed]] <- sapply(results, function(res) res$filtered_words)

return(data)
}
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olympics_data_en_full_smart_adapted <- remove_stopwords_2(olympics_data_en_full_rem, "tweet_text")

sum(stringr::str_count(olympics_data_en_full_nltk$tweet_text, '\\w+'))

[1] 1165

sum(stringr::str_count(olympics_data_en_full_smart_adapted$tweet_text, '\\w+'))

[1] 1025

sum(stringr::str_count(olympics_data_en_full_smart$tweet_text, '\\w+'))

[1] 1014

sum(stringr::str_count(olympics_data_en_full_iso$tweet_text, '\\w+'))

[1] 932

As we can see, our adapted SMART list removed slightly fewer stop words than the original
version, despite adding more words than we removed.

Important
In addition to modifying existing stopword lists, it is also possible to create your own
stopword lists based on the specific data set (Hvitfeldt and Silge 2021b). Words with
a very high frequency (and possibly also those with a very low frequency) are often
selected for this purpose. The advantage of this strategy is that the stopword list
is created from the use case. However, the determination of threshold values and
the inclusion of meaningful words also pose challenges here. In addition to creating
corpus-specific stopword lists, some researcher also recommended to perform this step
not before but after modeling (Schofield, Magnusson, and Mimno 2017).

What has already been true for minor text operations also applies to stopwords: the choice of a
specific stopword list should depend on the data type, the use case and method applied. For
example, Hvitfeldt and Silge (2021a) found with regard to their particular data set and their
supervised approach,“the results for all stop word lexicons are worse than removing no stop
words at all”. It is also not recommended to use these stopword lists for sentiment analyses,
as negations (e.g. not, don’t etc.) are also removed. For STM however, removing stopwords is
crucial to increase the model’s interpretability.

3.6 Creating a DFM: tokenization and lemmatization

Creating a document-feature-matrix (DFM), or more specifically a document-term-matrix,
is a common way to structure text data before analysis. The matrix consists of documents in rows
and words in columns displaying the frequency of each word for each document. In order to do so,
we first have to tokenize our text data, breaking it into words as smaller sub unit. Before creating
such a matrix of tokenized words, it is advisable to lemmatize the words first. Lemmatization
refers to the process of merging inflected words into their root form, known as the lemma. In
contrast to stemming, which simply removes common suffixes from words, lemmatization results
in normalized words. For lemmatization, we will first use the lemma_en.csv list stored in the
Git repository. To use the csv file, you have to save it in our local working environment.
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url_3 <- "https://raw.githubusercontent.com/YannikPeters/DQ_Tool_TextPreprocessing/main/lemma_en.csv"
lemma_en <- readr::read_csv(url_3)

olympics_en_dfm_level3 <- quanteda::corpus(olympics_data_en_full_smart_adapted$tweet_text, docnames = olympics_data_en_full_smart_adapted$no) %>%
# tokenize and remove numbers and symbols
quanteda::tokens(.,remove_numbers=TRUE, remove_symbols = TRUE) %>%
# lemmatize
quanteda::tokens_replace(lemma_en$inflected_form, lemma_en$lemma,

valuetype = "fixed") %>%
# convert to document-feature-matrix
quanteda::dfm() %>%
# remove texts that are empty after pre-processing
quanteda::dfm_subset(., ntoken(.) > 0)

head(olympics_en_dfm_level3)

Document-feature matrix of: 6 documents, 248 features (97.38% sparse) and 0 docvars.
features

docs pool alive excitement claim victory competition fierce fight against
text1 1 1 1 1 1 1 1 0 0
text2 0 0 0 0 0 0 0 1 1
text3 0 0 0 0 0 0 0 0 0
text4 0 0 0 0 0 0 0 0 0
text5 0 0 0 0 0 0 0 0 1
text6 0 0 0 0 0 0 0 0 0

features
docs dope

text1 0
text2 1
text3 0
text4 0
text5 1
text6 0

[ reached max_nfeat ... 238 more features ]

We have now created a DFM for our preprocessed data set. However, it would be valuable to
evaluate how the analyses differ when using different levels of preprocessing. In our pipeline so far,
we have used approaches of three categories of text preprocessing as defined by Churchill and Singh
(2021): elementary pattern-based preprocessing (e.g. removal of punctuation), dictionary-based
preprocessing (e.g. stopword removal), natural language preprocessing (e.g. lemmatization). We
will therefore consider it as level 3 preprocessed data. Let’s define three additional preprocessing
levels.

Levels Preprocessing steps

level 0 tokenization, automated translation
level 1 tokenization, automated translation and elementary pattern-based

preprocessing (removal of punctuation, symbols, hashtags, numbers etc)
level 2 tokenization, automated translation, elementary pattern-based

preprocessing and dictionary-based preprocessing (stopword removal)
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Levels Preprocessing steps

level 3 tokenization, automated translation, elementary pattern-based
preprocessing, dictionary-based preprocessing and natural language
preprocessing (lemmatization)

Level 0 leaves the original text mostly unmodified and only uses tokenization. Level 1 then
includes all pattern-based preprocessing, but no dictionary-based approaches. In addition to
pattern-based preprocessing, level 2 also removes stopwords, but does not use lemmatization.
For all levels, we use the combined data set of English tweets and the translated German and
French ones.

Important
Be aware that we do not apply all possible preprocessing steps, which might improve
topic interpretability as we limited the tutorial to rather “classic” preprocessing. Some
researchers, however, also used POS tagging to exclude verbs and some excluded
named entities to increase topic interpretability (Tolochko et al. 2024).

#creating level 0 dfm
olympics_en_dfm_level0 <- quanteda::corpus(olympics_data_en_full$tweet_text, docnames = olympics_data_en_full$no) %>%

# tokenize
quanteda::tokens(.) %>%
# convert to document-feature-matrix
quanteda::dfm() %>%
# remove texts that are empty after pre-processing
quanteda::dfm_subset(., ntoken(.) > 0)

#creating level 1 dfm
olympics_en_dfm_level1 <- quanteda::corpus(olympics_data_en_full_rem$tweet_text, docnames = olympics_data_en_full$no) %>%

# tokenize remove numbers and symbols
quanteda::tokens(.,remove_numbers=TRUE, remove_symbols=TRUE) %>%
# convert to document-feature-matrix
quanteda::dfm()%>%
# remove texts that are empty after pre-processing
quanteda::dfm_subset(., ntoken(.) > 0)

#creating level 2 dfm
olympics_en_dfm_level2 <- quanteda::corpus(olympics_data_en_full_smart_adapted$tweet_text, docnames = olympics_data_en_full$no) %>%

# tokenize and remove numbers and symbols
quanteda::tokens(.,remove_numbers=TRUE, remove_symbols=TRUE) %>%
# convert to document-feature-matrix
quanteda::dfm()%>%
# remove texts that are empty after pre-processing
quanteda::dfm_subset(., ntoken(.) > 0)

Let’s now compare the DFMs with regard to their general descriptive statistics.

dfms <- list(
"Level 0" = olympics_en_dfm_level0,
"Level 1" = olympics_en_dfm_level1,
"Level 2" = olympics_en_dfm_level2,
"Level 3" = olympics_en_dfm_level3
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)

# creating a dataframe
dfm_summary <- data.frame(

Model = character(),
Num_Documents = numeric(),
Unique_Tokens = numeric(),
Total_Tokens = numeric(),
stringsAsFactors = FALSE

)

# loop to calculate metrics
for (level in names(dfms)) {

dfm <- dfms[[level]]

# calculating dimensions of the DFM
num_documents <- dim(dfm)[1]
unique_tokens <- dim(dfm)[2]

# calculating total number of tokens
total_tokens <- sum(colSums(dfm))

# add data to dataframe
dfm_summary <- rbind(
dfm_summary,
data.frame(

Model = level,
Num_Documents = num_documents,
Unique_Tokens = unique_tokens,
Total_Tokens = total_tokens

)
)

}

# print descriptive statistics
print(dfm_summary)

Model Num_Documents Unique_Tokens Total_Tokens
1 Level 0 150 442 2918
2 Level 1 150 380 2174
3 Level 2 150 299 1005
4 Level 3 150 248 1005

While the number of tweets remains unaffected by preprocessing at 150, the vocabulary in terms
of unique words is significantly reduced by about 44% from level 0 to level 3. With regard to the
absolute number of tokens, it is even 65%. It is noticeable that level 2 and 3 are identical in
the total number of tokens. This is because all words are replaced during lemmatization, while
only the number of unique tokens is reduced. It also becomes clear that the number of tokens
differs from what we counted at the beginning with str_count. This is due to the fact that
the tokens-function from quanteda has a different strategy to identify tokens. For example,
punctuation marks or numbers are also considered as individual tokens by tokens function.
Compared to other packages, this approach is well-suited for our purpose of comparing different
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degrees of preprocessing. For example, the unnest_token function of the tidytext package
automatically removes punctuation when tokenizing. However, since we also want to include a
model without elementary pattern-based preprocessing for our comparison, this is ideal. Given
that the token function from quanteda allows the user to customize the process and is open for
fine-tuning (e.g. by using remove_punct etc.), it is preferable for our use case.

3.7 Topic Modeling

As mentioned earlier, we will now use STM (Roberts, Stewart, and Tingley 2019) as a topic
modeling strategy to analyze our text data. STM can be considered an extensions of LDA (Blei,
Ng, and Jordan 2002). In contrast to LDA, STM allows the correlation of topics as well as the
inclusion of meta-variables in the analysis, which makes it particularly popular in the social
sciences. Even though there are newer methods like BertTopic, they usually do not require classic
preprocessing steps like stopword removal in advance, but rather after calculating embeddings
and clustering documents. At the same time bag of word models still have proven to be effective
for determining the effects of text preprocessing on social media data (Churchill and Singh 2021)
(Harrando, Lisena, and Troncy 2021). Since the focus here is on data quality and not the method
itself, we will not delve into the regular steps and best practices for its application.

Note
A more detailed discussion on how to perform topic modeling in the social sciences
can be found in Maier et al. (2018).

Usually, an important step in applying STM is to find the optimal number of topics (k) using
certain metrics and manual evaluation. As we are calculating different models based on different
text data, we may not end up with the same number of topics per model. As our analysis,
however, is based on an artificial data set, we were able to address this issue in advance. We
have already integrated the following 10 topics into the data set.

prop.table(table(olympics_data$subtopic)) * 100

Athlete Performances Basketball Matches Doping Awareness
10.666667 12.000000 11.333333

Gold Medal Moments Gymnastics Highlights Marathon Race
11.333333 7.333333 12.000000

Opening/Closing Ceremony Soccer Excitement Swimming Events
11.333333 9.333333 6.000000

Wrestling Action
8.666667

We can, therefore, directly compare the topics modeled in LDA with the topics we implemented.
Because of this, we will use k=10 for all models.

N=10

dfm_stm0 <- quanteda::convert(olympics_en_dfm_level0, to ="stm")
dfm_stm1 <- quanteda::convert(olympics_en_dfm_level1, to ="stm")
dfm_stm2 <- quanteda::convert(olympics_en_dfm_level2, to ="stm")
dfm_stm3 <- quanteda::convert(olympics_en_dfm_level3, to ="stm")

set.seed(1000)
STM_0 <- stm::stm(dfm_stm0$documents, dfm_stm0$vocab, K = N, data = dfm_stm0$meta, max.em.its = 75, init.type = "LDA")

22

https://maartengr.github.io/BERTopic/index.html
https://maartengr.github.io/BERTopic/getting_started/tips_and_tricks/tips_and_tricks.html#document-length


set.seed(1000)
STM_1 <- stm::stm(dfm_stm1$documents, dfm_stm1$vocab, K = N, data = dfm_stm1$meta, max.em.its = 75, init.type = "LDA")

set.seed(1000)
STM_2 <- stm::stm(dfm_stm2$documents, dfm_stm2$vocab, K = N, data = dfm_stm2$meta, max.em.its = 75, init.type = "LDA")

set.seed(1000)
STM_3 <- stm::stm(dfm_stm3$documents, dfm_stm3$vocab, K = N, data = dfm_stm3$meta, max.em.its = 75, init.type = "LDA")

Important
In this tutorial, we will use “LDA” (Gibbs sampler) as an initialization method,
even though spectral intitialization is often preferred. Spectral initialization is a
deterministic approach, so that random seeds have no impact. However, spectral
initialization might lead to slightly different results depending on the machine used.
In order to avoid differences in the tutorial, we will use LDA for initialization to
ensure that the results are reproducible. For this data set, we find the topics being
modeled with LDA initialization to be even closer to our predefined topics then those
modeled via spectral initialization. Still, this does not imply that one should avoid
spectral initialization as it is particularly recommended when working with data sets
containing a large number of documents. For Stewart it is still the “first thing” to
try for a new data set.

Let’s inspect the most important terms per topic.

STM_0_labels <- as.data.frame(t(stm::labelTopics(STM_0, n = 7)$prob))
STM_1_labels <- as.data.frame(t(stm::labelTopics(STM_1, n = 7)$prob))
STM_2_labels <- as.data.frame(t(stm::labelTopics(STM_2, n = 7)$prob))
STM_3_labels <- as.data.frame(t(stm::labelTopics(STM_3, n = 7)$prob))

STM_0_labels

V1 V2 V3 V4 V5
1 and the ! the at
2 will ! #paris2024 ! olympics
3 #paris2024 #olympics2024 every #paris2024 are
4 #olympics2024 #goldmedal is #olympics2024 2024
5 who gold of #basketball paris
6 ? #paris2024 a basketball #olympics2024
7 hard who #wrestling2024 on a

V6 V7 V8 V9
1 ! the the !
2 athletes #olympics2024 #olympics2024 the
3 the of . #olympics2024
4 is what to is
5 #olympics2024 at ! during
6 these a #cleansport #paris2024marathon
7 for spirit #closingceremony2024 #paris2024

V10
1 !
2 in
3 #olympics2024

23

https://github.com/bstewart/stm/issues/133#issuecomment-357765115
https://github.com/bstewart/stm/blob/dbabf3405c660452bffc8bd1aaf72f7ea3867319/R/stm.R#L82-L101
https://github.com/bstewart/stm/issues/133#issuecomment-357766361


4 #soccer
5 #football
6 competition
7 is

STM_1_labels

V1 V2 V3 V4 V5 V6 V7 V8
1 the is let doping the the the at
2 gold the s to is on is olympics
3 us in athletes in are in are a
4 journey who is the athletes basketball paris paris
5 celebrate will their fair these s at our
6 to to support and what them during as
7 made competition the a matches display electric incredible

V9 V10
1 the of
2 will every
3 hard and
4 who story
5 work olympics24
6 and spirit
7 dedication olympics

STM_2_labels

V1 V2 V3 V4 V5 V6 V7
1 marathon gold doping celebrate promote support athletes
2 swimming made spirit work fair dedication best
3 runners journey against winning basketball display counts
4 paris unmatched olympics hard doping gymnastics heartfelt
5 skill nations time thrill integrity tells filled
6 limits soccer true competition sport athleticism journey
7 pushing medal sports medal competition routine cheering

V8 V9 V10
1 moments olympics paris
2 electric talent intensity
3 ceremony basketball story
4 arena showcase captivating
5 closing endurance olympics24
6 energy favorite matches
7 unforgettable making wrestling

STM_3_labels

V1 V2 V3 V4 V5 V6 V7
1 basketball gold dope arena make ceremony athlete
2 display paris sport soccer marathon moment victory
3 skill medal fair energy dream match fight
4 team journey promote excitement runner unforgettable thrill
5 talent celebrate against nation paris close testament
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6 showcase win play unmatched limit cheer admirable
7 good step integrity bring push join platform

V8 V9 V10
1 olympic dedication competition
2 incredible support olympic
3 olympics24 hard game
4 moment story fierce
5 close work alive
6 mark match excite
7 remind intensity claim

As we can see, our topics become more meaningful the more preprocessing steps are applied.
Especially the models at level 0 and level 1 are not clear as they mostly consists of stopwords like
“the”, “of”, “is”, “to” or “at”. Regarding level 2 and 3 we do find overlapping topics of course,
but also some differences. A comparison of the topics implemented in advance with the ones in
model 3 reveals a number of similarities. For instance, we find topics on doping, gold medalists,
ceremonies, basektball and athletic performance. In order to represent topic interpretability
numerically, often coders summarize the top terms and assign topic labels. Statistical agreement
coefficients such as Krippendorff’s alpha (Krippendorff 2004) would then be calculated. For the
purpose of this tutorial, we won’t calculate topic interpretability with human coders, but only
compare key internal metrics like semantic coherence and exclusivity. Semantic coherence refers
to the degree of which top terms from the same topic occur in the same document. Exclusivity,
on the other hand, refers to the degree of how unique the top terms in each topic are compared to
other topics. Usually, the relationship between topic coherence and exclusivity is asymmetrical.

#calculating model statistics
compute_metrics <- function(stm_model, documents, model_name, num_topics = 10) {

#Semantic Coherence
semantic_coherence <- stm::semanticCoherence(stm_model, documents)
mean_coherence <- sum(semantic_coherence) / num_topics

#Exclusivity
exclusivity <- stm::exclusivity(stm_model)
mean_exclusivity <- sum(exclusivity) / num_topics

#return values as a list
return(data.frame(
Model = model_name,
Mean_Coherence = mean_coherence,
Mean_Exclusivity = mean_exclusivity

))
}

# results for all for STM models
results <- list(

compute_metrics(STM_0, dfm_stm0$documents, "STM_0", num_topics = 10),
compute_metrics(STM_1, dfm_stm1$documents, "STM_1", num_topics = 10),
compute_metrics(STM_2, dfm_stm2$documents, "STM_2", num_topics = 10),
compute_metrics(STM_3, dfm_stm3$documents, "STM_3", num_topics = 10)

)

# create a dataframe with results
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results_df <- do.call(rbind, results)

# show results
print(results_df)

Model Mean_Coherence Mean_Exclusivity
1 STM_0 -87.69181 9.253717
2 STM_1 -103.92314 9.296437
3 STM_2 -178.24634 9.449605
4 STM_3 -168.72102 9.477481

# value range for plot
x_min <- min(results_df$Mean_Coherence) - 3

x_max <- max(results_df$Mean_Coherence) + 3

y_min <- min(results_df$Mean_Exclusivity) - 0.1

y_max <- max(results_df$Mean_Exclusivity) + 0.1

# creating a Scatterplot
ggplot2::ggplot(results_df, aes(x = Mean_Coherence, y = Mean_Exclusivity, color = Model)) +

geom_point(size = 5, alpha = 0.8) +
geom_text(aes(label = Model), vjust = -1.2, hjust = 0.5, color = "black") +
scale_color_viridis_d(option = "plasma", end = 0.9) +
labs(
title = "Comparing STM-models",
x = "Topic Coherence",
y = "Topic Exclusivity",
color = "Model"

) +
xlim(x_min, x_max) +
ylim(y_min, y_max) +
theme_minimal(base_size = 14) +
theme(
legend.position = "right",
legend.title = element_text(size = 12),
legend.text = element_text(size = 10)

)
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The comparison of the models highlights the impact of our preprocessing steps on these two
metrics. For semantic coherence, it is evident that the more preprocessing steps are applied, the
less coherent the models become. This is primarily because for model 0 and 1, topics include
tokens occuring very frequently in the data set and appear across multiple topics (e.g. stopwords).
In contrast, the exclusivity score increases with greater preprocessing as topics are less dominated
by highly frequent tokens. We already find some smaller differences between model 0 and 1,
highlighting the impact of minor text operations. A great distance occurs between model 1 and
model 2, underscoring the substantial effect of stopword removal on these metrics. Even though
it is shown for our data set that preprocessing results in lower coherence values, this does not
argue against the procedure itself. Rather, it indicates 1) that in text preprocessing a certain
level of exclusivity must be reached to model meaningful topics, 2) that topic coherence in the
use case of preprocessing does not correspond to topic interpretality and 3) how important the
manual interpretation and validation of the topics are. Still, this approach offers a structured
strategy for evaluating the effects of preprocessing on topic modeling. Still, especially for smaller
data sets, these metrics are sensitive and can vary even with smaller changes in the data, which
have to be considered.

4. Discussion

The tutorial has emphasized the importance of evaluating preprocessing steps while suggesting
systematic comparison at all levels of the research process to identify optimal solution tailored to
the use case. It examined effective approaches within the preprocessing steps, but also compared
how different levels of preprocessing affect modeling outcomes. These strategies are essential for
making informed decisions during the research process. However, applying specific preprocessing
steps depends on the use case, the collected data and the methods applied. For our use case - an
artificial data set based on #olympics2024 tweets - we conducted several preprocessing steps
including: 1) adressing multilingual content, 2) performing minor text operations, 3) removing
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stopwords and 4) lemmatization. We compared DeepL and GoogleTranslate as well as different
custom stopword lists like NLTK, SMART or Stopwords ISO and discussed multiple strategies
for assessing the impact of the different strategies on our text data. However, we did not employ
data augmentation strategies like POS tagging and named entity recognition. To evaluate the
effects of preprocessing, we compared different stages of preprocessing by modeling four separate
STMs. Each model was then manually evaluated for topic interpretability. It is important to
note that the deviations from the incorporated topics could also be influenced by the small size
of the data set, as modeling 10 topics for such limited data is relatively ambitious. We then
calculated different internal metrics like semantic coherence and exclusivity to compare the four
levels of preprocessing. This analysis allowed us to pinpoint the effects of every text preprocessing
step on the STM models. Our finding revealed that semantic coherence decreased with more
preprocessing because stopwords, punctuations and symbols co-occurring frequently were removed,
while exclusivity increased. Among the preprocessing steps, the removal of stopwords had the
most significant impact on these metrics. One way to achieve a model with higher coherence
values might involve removing only #Olympics2024 from the tweets and leave the remaining
hashtags in the data set. Since hashtags often also represent thematic contextualizations, this
might enhance topic interpretability as well.
At the same time, it is noticeable that small deviations can occur when topic models are
recalculated. This can be attributed to two primary factors:

1. Translation Variance: Deviations can arise from the inherent variability and nuances of
automatic translation, which may slightly alter the content during preprocessing.

2. Data Set Characteristics: The small size of the data set - comprising a limited number of
documents and a relatively low word count per document—amplifies the impact of minor
changes. Even small variations in the text can have a noticeable effect on the resulting
topic models.

These factors underscore the importance of considering data set size and preprocessing consistency
when analyzing text data, especially in studies using topic modeling techniques. Of course, the
results from this small-scale, artificial data set, are not generalizable, as they heavily depend on
the relationship between respective data and concrete preprocessing steps employed. Churchill
and Singh (2021) found coherence scores across LDA models to be relatively similar in their
comparison, with differences arising more clearly between model types rather than preprocessing
steps (without including manual evaluation). Ultimately, it is crucial to evaluate preprocessing
steps in a context-sensitive manner, considering their influence on results and their suitability for
the data and methods used.
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